[3]. by its various actions. This article explores the renin-angiotensin-aldosterone system with plasminogen activator-inhibitor-1 conversation and the potential significance of these interactions in the pathogenesis of progressive renal disease and remodeling of renal sclerosis. Keywords: Renin-angiotensin system, plasminogen activator-inhibitor-1, renal fibrosis, glomerulosclerosis, aldosterone Introduction Angiotensin and PAI-1. A Link between vasoactive and thrombotic systems Plasminogen activator-inhibitor-1 (PAI-1) is the primary physiological inhibitor of tissue plasminogen activator (tPA), and urokinase-like plasminogen activator (uPA), both of which activate plasminogen to plasmin, thus promoting fibrinolysis and proteolysis, and also activate other matrix metalloproteinases. Angiotensin induces PAI-1 via its metabolite Ang IV which binds to the AT4 receptor in vascular easy muscle cells and bovine aortic endothelial cells in vitro. Angiotensin induction of PAI-1 in vitro was found to be direct in the early phase, with a later component dependent on the co-induction of TGF-b by angiotensin. [1, 2]. Further, increased activity of the renin-angiotensin system (RAS), c-Kit-IN-2 whether by exogenous infusion of physiologic amounts of Ang II or by endogenous increase linked to the ACE (angiotensin-converting enzyme) DD polymorphism increases c-Kit-IN-2 PAI-1 levels in humans with no effect on tPA. [3]. PAI-1 activity is also genetically modulated by the c-Kit-IN-2 common 4G/5G polymorphism located -675 base pairs from the transcription start of PAI-1. Patients homozygous for the 4G allele have increased PAI-1 levels, and also increased risk for cardiovascular disease. Compound homozygosity (i.e., ACE D/D + PAI-1 4G/4G) for ACE and PAI-1 polymorphisms that have been linked to increased cardiovascular disease and renal disease risk was associated with an increased incidence of macroangiopathic disease in diabetic patients. This may relate to the linked effects of PAI-1 and RAS to promote thrombosis and fibrosis. Indeed, inhibitors of RAS significantly reduced thrombus formation in an animal model. Increased PAI-1 has also been associated with fibrosis. PAI-1 expression was tightly correlated with sites of glomerular injury in a radiation model where thrombosis progresses to glomerulosclerosis. Decreased injury in animal models was associated with maneuvers that decreased PAI-1 by treatment with angiotensin-converting enzyme inhibitors (ACEI) or angiotensin II subtype 1 receptor antagonists (AT1RA). The modulation of PAI-1 by ACEI also occurs in humans. Inhibition of angiotensin using ACEI significantly decreased PAI-1 antigen and activity in patients following acute myocardial infarction, with no effect on tPA antigen levels. Thus, choosing a RAS inhibitor, whether the intervention affects AT4, which at least in vitro induces PAI-1, or augments bradykinin, which stimulates tPA, could potentially have a profound impact on the balance of thrombosis/fibrosis versus fibrinolysis/ extracellular matrix (ECM) degradation (see below). Interactions of RAS and Aldosterone Ang-II may also affect sclerosis via aldosterone. The addition of aldosterone antagonism over angiotensin inhibition alone provided additional benefit on glomerulosclerosis in animal studies. Aldosterone antagonism alone also decreased vascular injury in the stroke-prone c-Kit-IN-2 hypertensive rat model. Importantly, aldosterone enhanced angiotensin induction of PAI-1 in vitro. In animal studies, in the nonhypertensive radiation nephropathy model, spironolactone, an aldosterone receptor antagonist, ameliorates sclerosis. This obtaining was not linked to effects on blood pressure or proteinuria but was tightly associated with decreased PAI-1 expression. These data demonstrate that inhibition of aldosterone can decrease PAI-1 in vivo, and suggest that targeting of both angiotensin and aldosterone may be necessary for optimal effect on PAI-1 and progression of glomerulosclerosis. Can the regression of disease-related sclerosis be achieved? In addition to increased matrix synthesis, decreased ECM proteolysis contributes to progressive renal fibrosis. PAI-1 inhibits not only fibrinolysis but also proteolysis, by inhibiting the activation of plasminogen activators. Plasmin can cleave most ECM proteins, and both tPA and uPA play essential roles in vascular remodeling, angiogenesis, and tumor metastasis. tPA primarily affects fibrinolysis, whereas uPA has less affinity for fibrin but avidly degrades the matrix. PAI-1 expression usually is present in very low levels in the kidney and is expressed in vitro in many cells, including endothelial and visceral epithelial cells [9]. PAI-1 is usually increased in vascular injury settings, whether thrombotic or fibrotic. Increased PAI-1 levels, whether due to the functional 4G/4G polymorphism of the PAI-1 gene promoter or due to other causes, are associated with cardiovascular disease. TGF-b 1 effects of inducing fibrosis may also, simply, relate with PAI-1 activities: TGF-b 1 induces PAI-1 to a larger degree than uPA in cultured endothelial cells, promoting fibrosis thus. Renal biopsy research in humans display c-Kit-IN-2 that using ACEI not merely slows the intensifying lack of the glomerular purification price (GFR) but also prevents ongoing KRT17 structural damage. In a little research of diabetics treated with either beta-blockers or ACEI, repeated renal biopsies had been performed. Over 3 years, there was hook upsurge in the afferent arteriolar.

Comments are closed.

Proudly powered by WordPress
Theme: Esquire by Matthew Buchanan.