Overall, in the tumors we investigated, we found no evidence that the human stromal cells and vessels contained in the original implant either survived or contributed in any substantive way to the growth of these xenografts

Overall, in the tumors we investigated, we found no evidence that the human stromal cells and vessels contained in the original implant either survived or contributed in any substantive way to the growth of these xenografts. Methods Xenograft model Fresh surgical specimens of tumors were obtained through the Pathology Resource Network at Roswell Park Cancer Institute through an approved IRB (Institutional Review Board) protocol. the vascularization process in a colon tumor and a mesothelioma L-APB xenograft. In mice bearing a head and neck xenograft, a perfusion study was performed to compare the functionality of the human and mouse tumor vessels. Results In patient tumors which successfully engrafted, the human stroma and vessels which were engrafted as part of the original tumor did not survive and were no longer detectable at the time of first passage (15C25 weeks). Uniformly, the stroma and vessels supporting the growth of these tumors were of murine origin. The results of the kinetic studies showed that the loss of the human vessels and vascularization by host vessels occurred more rapidly in a colon tumor (by 3 weeks) than in L-APB a mesothelioma (by 9 weeks). Finally, the perfusion studies revealed that while mouse vessels in the periphery of the tumor were perfused, those in the central regions were rarely perfused. No vessels of human origin were detected in this model. Conclusions In the tumors we investigated, we found no evidence that the human stromal cells and vessels contained in the original implant either survived or contributed in any substantive way to the growth of these xenografts. hybridization with an ALU probe. In agreement with the earlier report, Sanz et al. also found that at 30 days, RCC xenografts contained primarily human vessels, although they did not report the degree of tumor growth achieved during this period. Merk et al. [24], state that in non-small cell lung cancer patient xenografts, the stromal elements are replaced with murine fibroblasts, endothelial and immune cells. Monsma et al. [11] report that the stromal elements persist in xenografts, however, the origin of these elements in engrafted tumors is not specifically addressed. Therefore, it may be that the fate of the human vessels is related to individual L-APB tumor types and the timepoint at which the engrafted specimens are examined. We undertook the current study to directly address the question of the origin of the stromal elements in several different types of xenografted patient tumors with particular attention to the vasculature and identification of the origin of the vessels that support the actual growth of these xenografts. In representative xenografts of eight different tumor types, we found that as the tumors L-APB grew to a size to be passaged (approximately 1C1.5 cm diameter), the stroma PIK3C3 which developed was not of human origin. Furthermore, in a survey of lung, pancreatic, colorectal and renal cell carcinoma, we found uniformly that the vasculature lacked markers for human endothelial cells and only vessels of murine origin could be identified. Our results support the conclusion that successful engraftment and growth of these patient tumor xenografts depends on recruitment of stroma and new vessels from the murine host. Additionally, we examined the kinetics of vessel recruitment in a colorectal tumor and a mesothelioma and observed that during the initial engraftment, although the time-frame is slightly different, murine vessels gradually became predominant in both tumors. Lastly, we found that in an engrafted head and neck tumor, human vessels were not detected and perfused vessels were of murine origin. Overall, in the tumors we investigated, we found no evidence that the human stromal cells and vessels contained in the original implant either survived or contributed in any substantive way to the growth of these xenografts. Methods Xenograft model Fresh surgical specimens of tumors were obtained through the Pathology Resource Network at Roswell Park Cancer Institute through an approved IRB (Institutional Review Board) protocol. The clinical characteristics of the 37 patient tumors whose xenografts were used for various aspects of this study are included in Table?1. Of the 37 patients from whom tumor samples were procured, 9 had received therapy prior to surgery. All specimens were examined by.

Comments are closed.

Proudly powered by WordPress
Theme: Esquire by Matthew Buchanan.